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Abstract

In this paper, we study the short-term effect of fine particulate matter (PM 2.5) ex-

posure on respiratory Emergency Room (ER) visits in Chile, a middle-income country

with high levels of air pollution. To instrument for PM 2.5 we use wind speed at differ-

ent altitudes (pressure levels). Unlike previous papers, our data allow us to study the

impact of increasing air pollution at high levels of pollution. We find that a 1 micro-

gram per cubic meter (µg/m3) increase in PM 2.5 exposure for one day increases ER

visits for respiratory illness by 0.36 percent. The effect is positive for all age groups,

including the middle-age population, a novel finding in the literature.
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1 Introduction

In recent decades, pollution has become a severe health hazard worldwide. An important

source of air pollution, especially in urban areas, is fine particulate matter (PM 2.5). PM

2.5 are tiny particles with diameters smaller than 2.5 micrometers that, when inhaled, get

deep into the lungs or into the bloodstream, causing a variety of health problems such as

decreased lung function, aggravated asthma, irregular heartbeat, etc.1 In fact, some recent

studies find that PM 2.5 is associated with higher mortality for selected groups (Deryugina

et al. (2019), Gong et al. (2019), Clay et al. (2021), Kloog et al. (2013)). In this paper, we

study the short-term effect of PM 2.5 exposure on respiratory emergency room (ER) visits

across the age distribution. We use data from Chile, a middle-income country with high levels

of air pollution. In this line, the World Health Organization (WHO) emphasize the need

to carefully examine the health impact of pollution in high contaminated economies since

“extrapolation from studies in European and North American cities might not be applicable

in countries with higher levels of exposure”. (WHO (2016)).

The association between air pollution and health outcomes is well-documented in

medicine and epidemiology (Anenberg et al. (2018), Peel et al. (2005), Szyszkowicz et al.

(2018), Zanobetti and Schwartz (2006)). However, estimating the causal effect of pollu-

tion on health outcomes has many well-known challenges. First, individuals with different

characteristics may sort into areas with different air quality. For example, higher-income

individuals may spend more on health care or live in less polluted areas. Second, seasonal

factors increase both pollution and the incidence of respiratory diseases. For example, be-

cause of the intensive use of heating, pollution is usually higher in winter, when there are

also more cases of infectious respiratory diseases that may lead to more ER visits. Third,

measuring the true exposure to air pollution is challenging. In general, air pollution is not

evenly distributed within an area, and we usually do not have precise information on where

the individual lives or works. Finally, variation in air pollution can be partially driven by

human activity that can have itself a direct effect on health.

To overcome the threats to identification described above, we use air pollution data

and a rich administrative dataset on ER visits covering all Chilean hospitals between 2013

and 2019. We have daily PM 2.5 measures from 86 monitors located across the country and

daily information on total ER visits by age and cause of admission for all hospitals in the

1EPA, https://www.epa.gov/pm-pollution/particulate-matter-pm-basics#PM
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country. Our unit of analysis is a hospital. Specifically, we match a hospital with monitors

located within a 10 km distance. We use a sample of hospitals within a short distance from a

monitor to obtain a more accurate measurement of air pollution near the hospital. If people

do not travel long distances for an ER visit, then we also have a more accurate measurement

of pollution exposure for the individual who visits the hospital for an emergency episode.

We then estimate the effect of PM 2.5 on ER visits using wind speed at different altitudes

as instruments and ground-level wind speed as a control variable (along with other weather

variables), and hospital-year fixed effects. Our key identifying assumption is that, once we

control for ground-level wind speed, wind speed at different altitudes does not have a direct

effect on ER visits (exclusion restriction) but may affect air pollution (relevant condition).

Our paper relates to the broad literature that studies the relation between air pol-

lution and health outcomes (Kim (2021), Neidell (2004), Chen et al. (2013), Knittel et al.

(2016), Anderson (2020), Schlenker and Walker (2015), among others). However, none of

these studies focuses on PM 2.5. Some recent papers study the effects of PM 2.5 on health

outcomes. Deryugina et al. (2019), using administrative Medicare data and daily pollution

by US county from 1999 to 2013, study the effect of PM 2.5 exposure on elderly mortality,

health care use and medical costs. They find that an increase in PM 2.5 leads to more ER

visits, more hospitalizations, higher mortality, and higher inpatient spending. Ward (2015)

uses daily pollution data from Ontario municipalities and studies the impact of PM 2.5 on

respiratory admissions. She finds that 1 standard deviation change in PM 2.5 leads to a 3.6

percent increase in respiratory admissions for children aged 0-19 but no effect on the adult

population. Gong et al. (2019) estimate the long-term effects of PM 2.5 on mortality in

China and find that exposure to PM 2.5 causes a significant increase in all-cause and cardio-

respiratory mortality, with the largest impact on individuals older than 65. Godzinski and

Castillo (2021) disentangle the effect of various air pollutants by using many instruments,

and study their effect on emergency admissions and mortality in the largest urban areas in

France. They find that PM 2.5 has a positive effect on cardiovascular-related mortality rate

but no significant effects on respiratory ER admissions.

As Deryugina et al. (2019), our paper also studies the effect of PM 2.5 on ER visits.

However, unlike that study, our dataset allows us to identify the effect over a wider range of

pollution levels for all age groups. This is important because, in many developing countries,

the pollution level is much higher than in developed economies. Our data come from Chile, a

middle-income country with an elevated level of air pollution. According to OECD data, the
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mean population exposure to PM 2.5 in Chile was 23.7 microgram per cubic meter (µg/m3)

in 2019; the average in the US was less than 10 µg/m3, and the average in the OECD was 13.9

µg/m3. Moreover, the population exposed to PM 2.5 concentrations exceeding the WHO air

quality guideline2 (10 µg/m3 annual mean) was 98.6 percent in Chile; the same statistic in

the US was 5.6 percent, and the mean in the OECD was 61.7 percent. Not only the annual

mean but also the daily concentrations of PM 2.5 can get very high in Chile, reaching peaks

of more than 100 µg/m3 during several days through the winter months of the year. This

is more than six times the WHO air quality recommendation of a 15 µg/m3 24-hour mean.

Thus, in this paper, we identify the effects of pollution at levels not considered by the related

papers.

Other papers also use Chilean data to identify the effect of pollution on health out-

comes. Mullins and Bharadwaj (2015) study how environmental alerts in Santiago, Chile

decrease PM 10 concentrations up to 20 percent, leading to fewer deaths among the elderly

due to respiratory causes. Bharadwaj et al. (2017) examine the impact of fetal exposure to

carbon monoxide (CO) on math and language skills measured in the 4th grade. They find

that the 50 percent reduction in CO in Santiago between 1990 and 2005 increases lifetime

earnings by approximately 100 USD per birth cohort. Rivera et al. (2021) study the effect of

solar power generation in the North Region of Chile on air quality improvements and their

subsequent effect on human health. They find that solar energy displaces fossil fuel gener-

ation, reducing hospital admissions due to lower respiratory diseases. Finally, Ruiz-Tagle

(2019) studies the effect of PM 2.5 on ER visits in Santiago, Chile, using thermal inversions

and major FIFA football games to instrument for air pollution. He finds that one standard

deviation in PM 2.5 increases respiratory ER visits by 8.2 percent. Unlike the previous

study, we rely on a different identification strategy and use data from all over the country.

Our results at the hospital level indicate that a one µg/m3 increase in PM 2.5 daily

exposure increases ER visits for respiratory illness by 0.36 percent. When we aggregate the

data at the county level (as is usual in the literature), the results are equally significant but

smaller in magnitude, with a 0.17 percent increase in respiratory ER visits. Nevertheless,

this effect is 2.5 times larger than the same effect for the US reported in recent literature

(see, for example, Deryugina et al., 2019).

We also find that all age groups are affected. In particular, we find that for the

2This OECD indicator corresponds to the 2005 WHO air quality guideline of an annual mean of 10
µg/m3. This target changed to an annual mean of 5 µg/m3 in 2021.
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middle-aged group, between 15-64 years old, an increase of 1 µg/m3 in PM 2.5 increases

respiratory ER visits by 0.32 percent. As the middle-aged population constitutes the largest

group, any positive effect on ER visits may have important repercussions on the whole health

system. This is a new result in the literature. Papers that study the effect of PM 2.5 on ER

visits or admissions consider only selected age groups (Deryugina et al. (2019)) or find an

impact only for some age groups (Godzinski and Castillo (2021)). A noteworthy exception

is Gong et al. (2019), who find a positive effect of PM 2.5 on mortality rate using data for

China. Note that, similar to Chile, China has a much higher level of pollution than those

studied in other related papers, which could explain why they also find an effect for the

middle-aged group.

Finally, we also explore the effect on respiratory ER visits by cause of admission

and find that acute respiratory illnesses are the main driving force of the results for all age

groups, even though chronic respiratory illnesses are also important for the 15- to 64-year-old

population. When we explore the effects by geographical region, we find that the effect of

pollution is concentrated in different age groups depending on the geographic location, which

may be related to the different sources of emissions that are prevalent in the different regions.

Finally, we also study the robustness of our results by controlling for pollution alerts, for

lags in the pollution variables, and by performing the analysis at the municipality level.

Our paper is organized as follows. Section 2 describes the data. Section 3 presents

the empirical model. Section 4 discusses the results. Wee run a series of robustness checks

in 5 and conclude in Section 6.

2 Data

Air pollution

We obtain air pollution data from the Air Quality National Information System (SINCA)

of the Chilean Ministry of Environmental Affairs.3 The SINCA collects hourly information

on different pollutants, which we use to construct average daily measures of air pollution.

Our main variable of interest is fine particulate matter (PM 2.5), which is measured in

micrograms of particles per cubic meter (µg/m3). We have daily PM 2.5 information from

86 monitors during the period 2013-2019. The monitors are located in representative areas

3Sistema de Informacion Nacional de Calidad del Aire.
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by population or by the level of emissions. For this reason, there are more monitors in either

more-populated areas or less-populated but highly polluted areas, such as zones with high

industrial activity. Chile is divided into 16 regions, and there is at least one monitor in each

region. Figure 1 shows the locations of monitors across Chile (part a) and in the Santiago

Metropolitan Area (part b), which includes the capital city, Santiago, the country’s most

populated area, located in central Chile. Figure 2 shows the average PM 2.5 across Chile

(part a) and in the Santiago Metropolitan Area (part b). In general, the most polluted areas

with PM are in the central part (Santiago Metropolitan Area and Valparáıso) and the south

part of the country.

(a) All Monitors (b) Monitors in Santiago Metropolitan Area

Figure 1: Geographic distribution of Monitors
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(a) All municipalities (b) Municipalities in Santiago Metropolitan Area

Figure 2: Average PM 2.5 by municipality, 2013-2019

To further understand the differences in pollution across regions in Chile, Figure 3

shows PM 2.5 emission share by source and region (ordered from north to south) in 2018-

2019.4 In the northern part of the country, the most important emission sources are road

transport and stationary sources such as fossil fuel burning power plants, mainly related

to mining activities.5 The most important emission source in the southern part of the

country is the residential burning of wood. Finally, in the central area of the country,

Santiago Metropolitan Area and Valparáıso, emissions come mainly from road transport

and residential burning of wood.

Atmospheric Conditions

We use two types of data on atmospheric conditions: ground-level weather data and altitude-

weather data.

4Data on emission sources by region in 2018-2019 is from the Registro de Emisiones y Transferencias
Contaminantes (RETC).

5Mining companies are located mainly in the northern region of the country.
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Figure 3: PM 2.5 emission share by source and region, 2018-2019

Ground-level weather data comes from the Center for Climate and Resilience Research

(temperature and precipitation) and SINCA (wind speed). The Center for Climate and

Resilience Research organization collects daily minimum and maximum temperatures and

precipitation for weather stations owned by the Dirección Meteorológica de Chile and the

Dirección General de Aguas. There are in total 295 stations reporting hourly temperature

and 816 stations reporting hourly precipitations. We use the hourly data to compute the

daily maximum and minimum temperature, and the daily cumulative precipitation.6 We

complement these data with wind information from 127 SINCA stations. SINCA stations

report hourly information on wind speed (in km/hour). We average the hourly wind speed

to compute the daily wind speed.

Altitude-weather data comes from NASA’s Modern-Era Retrospective analysis for

6The data on atmospheric conditions are publicly available from http://www.cr2.cl/recursos-y-
publicaciones/bases-de-datos. We keep stations with more than 2 years of data. We drop daily observations
with minimum temperatures below -30 degrees Celsius or above 35 degrees Celsius, maximum tempera-
tures below -25 degrees Celsius or above 42 degrees Celsius, or negative values of precipitation. We also
drop observations where the maximum temperature is more than 3 SD above or below the mean maximum
temperature in that month of the year, and we did the same for minimum temperatures.
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Research and Applications, Version 2 (MERRA-2).7 MERRA-2 is a reanalysis data product

that combines observations from various sources with an atmospheric data assimilation al-

gorithm to produce a 3-dimensional, gridded dataset containing atmospheric conditions for

all the planet since 1980. MERRA-2 data is provided with a spatial resolution of 5/8° longi-

tude by 1/2° latitude grid at 6 different times (00 GMT, 06 GMT, 12 GMT, and 18 GMT).

We obtained east-west wind direction (u-component) and north-south wind direction (v-

component) at different atmospheric pressure levels from the M2I6NPANA file. These data

are available for 42 atmospheric pressure levels (layers), corresponding to different altitudes.

We download these data for those locations where there exist SINCA monitors measuring

either MP 2.5 or wind speed to minimize the computational burden of downloading the data

for the whole country. Finally, for each layer, we convert the average u- and v-component

into wind speed and then average wind speed at the daily level.

Emergency department visits

We obtain data on ER visits from Chile’s Ministry of Health.8 The dataset includes all daily

ER visits in Chile for the period 2013–2019 by cause, age group, and hospital. Age groups

are 0-1 year, 1-4 years, 5-14 years, 15-64 years, and older than 65 years. Causes of ER visits

are divided into four groups: respiratory, circulatory, external causes (traffic accidents and

other external causes), and other causes. Within the respiratory group, there are several sub-

groups associated with ICD-10 codes: acute upper respiratory infections (J00-J06), influenza

(J09-J11), pneumonia (J12-J18), acute bronchitis or bronchiolitis (J20-J21), chronic lower

respiratory diseases (J40- J46), and other respiratory causes (J22, J30-J39, J47, J60-J98).

To combine the different sources of information, we select hospitals located within a 10

km radius of a monitor as our unit of observation. Using information from SINCA monitors

within a 10 km radius of a hospital, we use inverse distance weighting to compute PM 2.5 at

the hospital location. We then average maximum and minimum temperatures from stations

within 50 km from the hospital, and precipitation and wind speed (both ground-level and

altitude-weather level) from weather stations within 20 km from the hospital. By restricting

our sample to hospitals within a short distance of a monitor, we have a more accurate

7See Gelaro et al. (2017) for a description of MERRA-2 and Bosilovich et al. (2016) for detailed information
on the available data.

8Data are available from the Departamento de Estad́ısticas e Información de la Salud (DEIS) at
https://deis.minsal.cl.
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measurement of air pollution near the hospital. If people do not travel long distances for

ER visits, then we also have a more accurate measurement of pollution exposure for the

individuals who visit the ER. We select the period 2013–2019 because few monitors measure

PM 2.5 before 2013.

Table 1 shows the number of hospitals and observations in our sample by year. Since

the the number of monitors has increased over time, the number of hospitals we can match

to a monitor has increased, as well.9

Table 2 shows summary statistics of our sample. We have 2,618,765 observations.

The average concentration of PM 2.5 is 26.32. The average number of daily ER visits per

hospital is 27, and around 30 percent of these ER visits correspond to respiratory conditions.

From those, 77 percent correspond to acute respiratory conditions. The average maximum

temperature is 21 degrees Celsius; the average minimum temperature is 9 degrees Celsius;

the average precipitation is 1.22 mm; and the average ground level wind speed is 1.63 km

per hour. As expected wind speed at altitude increases with altitude.

Figure 4 shows the average daily respiratory ER visits (panel (a)) and the average

daily PM 2.5 (panel (b)). Note that both variables are highly seasonal and highly correlated

with each other. Note also that both pollution and respiratory ER visits are higher during

the winter (June-August). Figure 5 shows the average daily mean across regions. The

central and southern regions show higher levels of pollution, reaching a daily mean close to

60 µg/m3. Note, however, that even during the summer, when pollution is lower, the daily

mean is higher than the WHO air quality recommendation for PM 2.5, which is an annual

average daily mean of 5 µg/m3 and a 24 hours-concentration of 15 µg/m3. So, PM 2.5 is

above what is considered healthy for most of the year across regions.

Finally, Table 3 shows the overall variation in PM 2.5 and further decomposed in

the between hospital-year-month and the within hospital-year-month variation. As observed

from the table, the within-variation is similar to the between-variation. Having enough

within-variation is important for our estimation strategy since we exploit the daily PM 2.5

variation within each hospital, as we explain in detail in the next section.

9In Section 5, we confirm that our results are not driven by entry/exit of hospitals. We estimate our main
model with a balanced sample and find similar results.
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(a) Respiratory ER visits

(b) Average daily PM 2.5 concentration

Figure 4: Air pollution and respiratory ER visits, 2013-2019
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Figure 5: Average daily PM 2.5 concentration by region

3 Empirical Strategy

We estimate the short-term effect of PM 2.5 exposure on respiratory ER visits using the

following model:

Yhadmy = β0 + β1PM2.5hdmy +X ′
hdmyγ + αa + αhy + αdmy + ϵhadmy, (1)

where Yhadmy is the logarithm of respiratory ER visits for age group a in hospital h

on day d in month m and year y; PM2.5hdmy is the PM2.5 in hospital h on dmy; Xhdmy are

weather variables (daily max and min temperature and precipitation) in hospital h on dmy;

αa is an age group fixed effect; αhy is an hospital-year fixed effect; αdmy is an day-month-

year fixed effect; and ϵhadmy captures unobservables that affect the outcome variable. Our

parameter of interest is β1, the coefficient on PM 2.5.

OLS estimates of equation (1) could be biased if there is measurement error in expo-

sure to PM 2.5, or if the daily allocation of PM 2.5 within a hospital-year cell is not as good

as randomly assigned. There could be measurement error in exposure to PM 2.5 because our

daily measures of PM 2.5 levels at the monitor location could differ from the actual exposure
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of individuals who visit the ER. To minimize this source of measurement error, we choose

hospitals located within a 10 km radius from a monitor. Because we focus on emergency

episodes, we expect that the place of residence or work should be a short distance from the

hospital.

Given the possible endogeneity of the allocation of PM 2.5 within a hospital-year cell,

we use wind speed at different altitudes to instrument the level of PM 2.5, using ground-

level wind speed as a control variable. As described above, we have data for atmospheric

conditions for a vertical grid parametrizing altitude through 42 different pressure levels

(layers). The layers start at 1000 hPa (approximately 100 meters above sea level) and end at

0.1 hPa (approximately 37,000 meters above sea level). We choose only 3 layers to minimize

problems with many instruments: 12 (725 hPa), 16 (550 hPa), and 18 (450 hPa).10 We start

with layer 12 at 725 hPa (approximately 2,500 meters) because there were several missing

values for the layers below layer 12 (the average altitude in Chile is 1,800 meters) and also

to avoid potential collinearity with ground-level wind speed.11

Our instrument satisfies the exclusion restriction because we use ground-level wind

speed as a control variable to capture the direct effect that wind speed may have on health.

Therefore, wind speed at different altitudes is unlikely to have a direct effect on ER visits

and may only affect health through the level of pollution. Moreover, because the level of fine

particulates depends on weather conditions such as wind, our instrument is correlated with

air pollution. The specification for the first stage of the IV is

PM2.5hdmy =π1wind speed
12
hdmy + π2wind speed

16
hdmy + π3wind speed

18
hdmy (2)

+X ′
hdmyθ + αa + αhmy + αdmy + ϵhadmy,

where wind speed12hdmy, wind speed
16
hdmy and wind speed18hdmyare the average daily wind

speed in hospital h on date dmy measured at three different pressure levels: 725hPa (layer

12), 550hPa (layer 16), and 450hPa (layer 18).

We estimate equations (1) and (2) clustering the standard errors at the hospital level.

10When we estimate the model with all the layers between 12 and 18, we find similar results.
11Other papers using similar instruments are, for example, Schwartz et al. (2017) or Godzinski and Castillo

(2021).
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4 Results

Table 4 shows the OLS (columns (1) and (2)) and IV (columns (3) and (4)) estimates of

the impact of PM 2.5 on respiratory ER visits. Columns (1) and (3) in the table show a

basic specification with hospital fixed effects, and columns (2) and (4) show our preferred

specification, which includes hospital-year interactions. We estimate that an increase in

1 µg/m3 in PM 2.5 increases respiratory ER visits from 0.32 to 0.36 percentage points.

These results are twelve times larger than the OLS estimates.12 The estimated effect is

not negligible: a 1 standard deviation increase in PM 2.5 (around 24 µg/m3) increases

respiratory ER visits by 8 percentage points. The test of weak instruments in the first stage

has an F-stat of 272.9, showing that the instruments satisfy the relevance condition necessary

for identification in the IV estimation.

Using our preferred specification, which includes hospital-year interactions, we ex-

plore heterogeneous effects by age group in Figure 6 and Table 5. An increase in PM 2.5

causes an increase in respiratory ER visits in all age groups, including the 15-64 years-old

population. Coefficients across age groups are close enough to be statistically indistinguish-

able. In particular, we find that for the 15-64 age group, a 1 µg/m3 increase in PM 2.5

leads to a 0.32 percent increase in respiratory ER visits. The last result is important. The

middle-aged population constitutes the largest group, so any positive effect on respiratory

ER visits also has a potentially large impact on the health system. A plausible explanation

is that, at higher levels of pollution, every age group is affected by higher concentration of

PM. 2.5.

12Deryugina et al. (2019) and Ward (2015) obtain a similar upward correction in their IV estimates.
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Figure 6: IV estimates of the effect of PM 2.5 on (log) respiratory ER visits, by age group

Table 6 explores the effect of PM 2.5 on different types of respiratory ER visits. We

split total respiratory ER visits into acute (J00-J21), chronic (J40-J46), and other respiratory

conditions. The effects of PM 2.5 on acute respiratory ER visits are positive and significant

for all age groups (Panel B). However, chronic respiratory ER visits seem to be affected by

daily variations on pollution only for people older than 65 (and marginally for children aged

5-14) and not for the other age groups (Panel C).

Given the difference between pollution levels in different parts of the country, in

Table 7 and Figure 7, we show the results when we divide our national sample into three

geographical regions (North, South, and Santiago Metropolitan). In the North region we

find a positive and significant effect for the population between 1-4 and 15-64 years old.

The difference in the results by geographical region may be related to the heterogeneity in

sources of pollution (see Figure 3 on page 8). Notice than, for example, in the North, where

mining activities are important, we only observe impacts in older children and adults, but

not in elderly people or young children. However, in the Santiago Metropolitan area, where

road transport is the dominant source, the effect are concentrated in young children (age

0-5). Finally, notice that in the South, where the main source of pollution is residential wood

15



Figure 7: IV estimates of the effect of PM 2.5 on (log) respiratory ER visits by region

burning and the average pollution level is the highest, we observe effects for all age groups,

even though they are lower than in the other cases.

5 Robustness Checks

In this section, we run several robustness exercises to evaluate the sensitivity of our results.

First, we control for alerts as they may cause avoidance behavior (Neidell (2009);

Moretti and Neidell (2011)), or change the pollution level by triggering mitigation actions

(Rivera (2021). Data on air quality episodes are obtained from theMinistry of Environmental

Affairs. This system is used in thirteen different geographical areas located in the Santiago

Metropolitan Area and the south of Chile during winter.13

The issuance of air quality episodes is based on a forecasting model of PM 2.5 for the

following day. When the forecasted PM 2.5 is equal to or higher than 80µg/m3 in at least one

of the monitors located in a geographic area, the environmental authority recommends to the

13The system is active for a fixed period during a year, but this period can vary by geographic area and
over time. For example, in 2020, the system was active between May 1 and August 31 for the Santiago
Metropolitan Area, and between April 1 and September 30 for Temuco and Padre de las Casas.
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local government issue an air quality episode for the following day. Depending on the severity

of the pollution, there are three different types of air quality episodes. An alert episode is

issued when PM 2.5 is expected to be between 80 and 109 µg/m3; a pre-emergency episode

is issued when PM 2.5 is expected to be between 110 and 169 µg/m3, and an emergency

episode is issued when PM 2.5 is expected to be higher than 170 µg/m3. These episodes

trigger protocols, such as driving restrictions, prohibition of residential wood combustion,

the shutdown of stationary pollution emission sources, and cancellation of physical exercise

classes for elementary and high school students. The specific mitigation actions depend on

each geographical area. We construct the variable Alert, a dummy that indicates if a PM 2.5

episode of alert, pre-emergency, or emergency is issued on a given day in a monitor’s location.

Table 8 show the results. First, notice that the main coefficient is similar to the one in the

main specification in the OLS specification and slightly higher in the IV specification. Both

the dummy and its interaction with PM 2.5 have a negative effect on respiratory ER visits.

The negative sign for the interaction effect indicates that respiratory ER visits decrease when

pollution level increases and an alert is issued. This results is in line with Kim (2021), who

also finds a negative interaction effect. However, we find a negative direct effect of alerts on

ER visits, suggesting the presence of avoidance behavior.

Second, in our empirical specification, we match hospitals to monitors within a 10

km distance to have a more accurate measure of pollution exposure. However, most of

the previous literature studies the impact of pollution at the county level. Therefore, to

facilitate the comparison of our results, we estimate our preferred specification at this level

with the respiratory ER visit rate per million residents as the dependent variable. Tables 9

and 10 show the results of this exercise. In Table 9, we find that an increase in 1 µg/m3 in

PM 2.5 increases respiratory ER visits by 4.48 per million (0.16 percentage points), sizably

lower than those in our main specification (0.36 percentage points). However, we find a

larger impact than Deryugina et al. (2019), who find that an increase of 1 µg/m3 in PM

2.5 increases ER visits by 2.69 per million people in the US (0.07 percentage points). To

make the comparison more accurate we should focus on people aged 65 and over, (Table 10)

where we find an increase of 4.97 visits per million people, making the difference even larger.

This difference might be due to the higher level of the overall pollution in our data, which

leads to bigger effects. Table 10 confirms that, with this alternative specification, we find

a significant impact for all ages. In the online appendix, we repeat this analysis with the

logarithm of respiratory ER visits as the dependent variable, with similar results.
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Third, we run some falsification tests using non-respiratory ER visits that are less

likely to be affected by air pollution. Table 11 reports the results for ER visits due to

respiratory illnesses (Panel A), circulatory illnesses (Panel B), and traffic accidents (Panel

C). We do not find any significant effect on ER visits due to circulatory illnesses or traffic

accidents.

Fourth, we also study the cumulative effects of pollution. Table 12 shows the results

when we add two lags of the PM 2.5 variable. The main result remains robust and the

lags do not seem significant to explain respiratory ER on the same day. Table 13 shows the

results when we use 3-day average PM 2.5 as the measure for pollution. The main result

remains robust although lower in magnitude.

Finally, in Tables A.4 and A.5 in the Online Appendix, we show that our results are

robust to using a balanced panel of hospitals (dropping those hospitals that enter the sample

due to the entry of new monitors). They are also robust to using weights for each hospital

equal to the annual average number of respiratory ER visits for each age group.

Figure 8 summarizes the results for the different specifications described above and

those in the online Appendix. The effects show that an increase of 1µg/m3 in PM 2.5 in-

creases respiratory ER visits between a range from .18 to .42, depending on the specification.

These effects are, however, higher than in the related literature.

6 Conclusion

Pollution has become a hazard worldwide, affecting the health of the population. Studying

the causal relationship between pollution and different health outcomes is important, as it

makes it possible to address the true costs of contamination and, therefore, to design optimal

environmental policies. One important source of pollution is particulate matter. PM 2.5

are tiny particulates that, when inhaled, can cause a variety of health problems. In this

paper, we study the impact of PM 2.5 on respiratory ER visits. We use data from Chile, a

middle-income, highly polluted country. Unlike the approach in some previous papers in the

literature, this allows us to study the impact of PM 2.5 over a wide range of pollution levels.

This is important because when pollution is low, it may not affect the whole population but

only the more sensitive groups, such as the elderly. However, when we move to higher levels

of contamination, all age groups are affected.

Our detailed dataset allows us to control for some well-documented problems in this
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Figure 8: Effect of PM 2.5 on respiratory ER visits. Different specifications.

literature: sorting of individuals, seasonal factors, measurement error due to the unknown

true exposure level and avoidance behavior, and endogeneity of air pollution. Our identifica-

tion strategy uses wind speed at different altitudes to instrument the level of PM 2.5, using

ground-level wind speed as a control variable. instrument air pollution using altitude wind

speed. Our instrument satisfies the exclusion restriction because we use ground-level wind

speed as a control variable to capture the direct effect that wind speed may have on health.

Therefore, wind speed at different altitudes is unlikely to have a direct effect on ER visits

and may only affect health through the level of pollution. Moreover, because the level of fine

particulates depends on weather conditions such as wind, our instrument is correlated with

air pollution.

We find that an increase of 1 µg/m3 in PM 2.5 increases respiratory ER visits from

0.32 to 0.36 percentage points, a bigger effect than previous work on less polluted countries.

Moreover, we find similar effects for all age groups. In particular, the 14-65 years old groups

are similarly affected by air pollution than other, more sensitive groups like children and

older adults (65+).
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Appendix: Tables

Table 1: Number of hospitals by year

Year Number of Hospitals Number of Observations

2013 204 327,740
2014 209 357,565
2015 222 367,425
2016 240 392,815
2017 240 413,685
2018 242 411,715
2019 244 347,820

Note: This table reports the number of hopitals and observations by
year for the estimation sample.
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Table 2: Summary statistics, 2013–2019

Variables Mean s.d.

Pollution

PM 2.5 (µg / m3) 26.32 22.77

Respiratory 8.16 9.85

Acute respiratory (J00-J21) 6.81 8.64

Chronic respiratory (J40-J46) 0.44 1.22

Other respiratory 0.91 3.05

Circulatory 0.55 1.69

Traffic accidents 0.14 1.15

Weather

Max. Daily Temp. (Celsius) 20.92 6.36

Min. Daily Temp. (Celsius) 8.96 4.07

Daily precipitation (mm) 1.22 4.96

Wind Speed (km/hour) 1.63 0.90

Wind Speed (layer 12) (km/hour) 7.97 4.96

Wind Speed (layer 16) (km/hour) 14.60 7.00

Wind Speed (layer 20) (km/hour) 26.46 11.67

Observations 2,618,765

Note: This table reports descriptive statistics for the estimation sam-
ple. Unit of observation is hospital-day. Altitude wind speed is mea-
sured at three different pressure levels: 725 hPa (layer 12), 550 hPa
(layer 16), and 450 hPa (layer 18).
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Table 3: Overall, between and within variation in PM 2.5, 2013–2019

Mean Std Dev Min Max N/n/T-bar

PM 2.5 (µg / m3) overall 26.32 22.77 0.00 739.35 523,753
between . 16.74 0.00 376.55 17,798
within . 15.77 -144.91 723.62 29

Note: This table reports the variation in PM 2.5 for the estimation sample. The ”be-
tween” variation is the variation across hospital-month-year, and the ”within” variation is
the variation within a hospital-month-year. N is total number of hospital-year-month-day
observations (overall variation), n is the total number of hospital-year-month observations
(between variation) and Tbar is the average number of observations by a hospital in a month
(within variation).

Table 4: OLS and IV estimates of the effect of PM 2.5 on (log) respiratory ER visits

OLS IV/2SLS

(1) (2) (3) (4)

PM 2.5 (µg / m3) 0.0002*** 0.0002*** 0.0032*** 0.0036***
[0.0001] [0.0001] [0.0004] [0.0003]

Hospital FE Yes No Yes No

Hospital-Year FE No Yes No Yes

F stat PM 2.5 (weak inst.) 304.5 272.9
p-value PM 2.5 (weak inst.) 0.000 0.000
Mean DV 8.165 8.165 8.165 8.165
Observations 2,618,765 2,618,765 2,618,765 2,618,765

Note: This table reports OLS and IV estimates of equation (1). The dependent variable
is the logarithm of respiratory ER visits. The instruments for PM2.5 are wind speed at
three different pressure levels: 725 hPa (layer 12), 550 hPa (layer 16), and 450 hPa (layer
18). All specifications include hospital, day-month-year and age group fixed effects, and
flexible controls for temperatures (maximum and minimum), precipitation, and ground-
level wind speed. The test for weak instruments uses the F statistics and p-values from
Sanderson and Windmeijer (2016). Standard errors, clustered by hospital, are reported
in brackets. Significance levels are indicated by ∗ < .1, ** < .05, *** < .01.
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Table 5: IV estimates of the effect of PM 2.5 on (log) respiratory ER visits, by age group

(1) (2) (3) (4) (5)
< 1 1-4 5-14 15-64 65 +

PM 2.5 (µg / m3) 0.0033*** 0.0038*** 0.0038*** 0.0032*** 0.0039***
[0.0007] [0.0006] [0.0005] [0.0004] [0.0006]

Mean DV 3.236 9.043 8.248 17.335 2.962
Observations 523,637 523,637 523,637 523,637 523,637

Note: This table reports IV estimates of equation (1) by age group. The dependent variable is the
logarithm of respiratory ER visits in the corresponding age group. The instruments for PM2.5 are
wind speed at three different pressure levels: 725 hPa (layer 12), 550 hPa (layer 16), and 450 hPa
(layer 18). All specifications include hospital-month and day-month-year fixed effects, and flexible
controls for temperatures (maximum and minimum), precipitation, and ground-level wind speed.
The test for weak instruments uses the F statistics and p-values from Sanderson and Windmeijer
(2016). Standard errors, clustered by hospital, are reported in brackets. Significance levels are
indicated by ∗ < .1, ** < .05, *** < .01.
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Table 6: IV estimates of the effect of PM 2.5 on different types of respiratory ER visits, by
age group

(1) (2) (3) (4) (5)
< 1 1-4 5-14 15-64 65 +

Panel A: All respiratory (J00-J99)

PM 2.5 (µg / m3) 0.0033*** 0.0038*** 0.0038*** 0.0032*** 0.0039***
[0.0007] [0.0006] [0.0005] [0.0004] [0.0006]

Mean DV 3.236 9.043 8.248 17.335 2.962
Observations 523,637 523,637 523,637 523,637 523,637

Panel B: Acute respiratory (J00-J21)

PM 2.5 (µg / m3) 0.0032*** 0.0037*** 0.0037*** 0.0031*** 0.0038***
[0.0007] [0.0006] [0.0006] [0.0005] [0.0006]

Mean DV 2.652 7.654 7.061 14.502 2.165
Observations 523,637 523,637 523,637 523,637 523,637

Panel C: Chronic respiratory (J40-J46)

PM 2.5 (µg / m3) 0.0003 -0.0002 0.0006* 0.0007 0.0011***
[0.0004] [0.0005] [0.0003] [0.0005] [0.0004]

Mean DV 0.291 0.566 0.288 0.679 0.400
Observations 523,637 523,637 523,637 523,637 523,637

Panel D: Other respiratory

PM 2.5 (µg / m3) 0.0004 0.0005 0.0005 0.0003 0.0005
[0.0003] [0.0004] [0.0006] [0.0006] [0.0003]

Mean DV 0.294 0.822 0.900 2.154 0.398
Observations 523,637 523,637 523,637 523,637 523,637

Note: This table reports IV estimates of equation (1) for different types of respiratory ER visits by
age group. The dependent variable is the logarithm of respiratory ER visits in the corresponding age
group. The instruments for PM2.5 are wind speed at three different pressure levels: 725 hPa (layer
12), 550 hPa (layer 16), and 450 hPa (layer 18). All specifications include hospital and day-month-
year fixed effects, and flexible controls for temperatures (maximum and minimum), precipitation,
and ground-level wind speed. The test for weak instruments uses the F statistics and p-values from
Sanderson and Windmeijer (2016). Standard errors, clustered by hospital, are reported in brackets.
Significance levels are indicated by ∗ < .1, ** < .05, *** < .01.
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Table 7: IV estimates of the effect of PM 2.5 on (log) respiratory ER visits by region

(1) (2) (3) (4) (5)
< 1 1-4 5-14 15-64 65 +

Panel A: North

PM 2.5 (µg / m3) 0.0010 -0.0000 0.0095*** 0.0090*** 0.0033
[0.0028] [0.0034] [0.0023] [0.0027] [0.0029]

F stat PM 2.5 (weak inst.) 716.3 716.3 716.3 716.3 716.3
p-value PM 2.5 (weak inst.) 0.000 0.000 0.000 0.000 0.000
Mean DV 1.036 1.864 1.834 2.512 0.999
Observations 49,225 49,225 49,225 49,225 49,225

Panel B: Metropolitan region

PM 2.5 (µg / m3) 0.0128*** 0.0093** -0.0001 0.0018 0.0015
[0.0045] [0.0038] [0.0064] [0.0033] [0.0035]

F stat PM 2.5 (weak inst.) 210.9 210.9 210.9 210.9 210.9
p-value PM 2.5 (weak inst.) 0.000 0.000 0.000 0.000 0.000
Mean DV 1.050 1.950 1.883 2.628 1.129
Observations 284,163 284,163 284,163 284,163 284,163

Panel C: South

PM 2.5 (µg / m3) 0.0059*** 0.0042*** 0.0025** 0.0017** 0.0035***
[0.0010] [0.0011] [0.0010] [0.0007] [0.0011]

F stat PM 2.5 (weak inst.) 55.0 55.0 55.0 55.0 55.0
p-value PM 2.5 (weak inst.) 0.000 0.000 0.000 0.000 0.000
Mean DV 1.078 1.987 1.944 2.629 1.163
Observations 190,126 190,126 190,126 190,126 190,126

Note: This table reports OLS and IV estimates of equation (1) by different regions by age group.
North includes regions located to the north of the Metropolitan region; South includes regions
located to the south of the Metropolitan region. The dependent variable is the logarithm of res-
piratory ER visits. The instruments for PM2.5 are wind speed at three different pressure levels:
725 hPa (layer 12), 550 hPa (layer 16), and 450 hPa (layer 18). All specifications include hospital,
day-month-year and age group fixed effects, and flexible controls for temperatures (maximum and
minimum), precipitation, and ground-level wind speed. The test for weak instruments uses the F
statistics and p-values from Sanderson and Windmeijer (2016). Standard errors, clustered by hos-
pital, are reported in brackets. Significance levels are indicated by ∗ < .1, ** < .05, *** < .01.
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Table 8: OLS and IV estimates of the effect of PM 2.5 on (log) respiratory ER visits.
Robustness controlling for pollution alerts.

OLS IV/2SLS

(1) (2) (3) (4)

PM 2.5 (µg / m3) 0.0002*** 0.0002*** 0.0036*** 0.0038***
[0.0001] [0.0001] [0.0003] [0.0004]

Alert 0.0174*** -0.0702***
[0.0063] [0.0240]

PM 2.5 × Alert -0.0003*** -0.0023**
[0.0001] [0.0010]

Hospital-Year FE Yes Yes Yes Yes

F stat PM 2.5 (weak inst.) 272.9 286.5
p-value PM 2.5 (weak inst.) 0.000 0.000
F stat PM 2.5 × Alert (weak inst.) 58.4
p-value PM 2.5 × Alert (weak inst.) 0.000
Mean DV 8.165 8.165 8.165 8.165
Observations 2,618,765 2,618,765 2,618,765 2,618,765

Note: This table reports OLS and IV estimates of equation (1) controlling for pollution alerts. The
dependent variable is the logarithm of respiratory ER visits. The instruments for PM2.5 are wind
speed at three different pressure levels: 725 hPa (layer 12), 550 hPa (layer 16), and 450 hPa (layer 18).
Columns (2) and (4) include a dummy variable for an air pollution alert and its interaction with PM2.5
(in deviations with respect to 80 µg/m3, the PM level that activates the alert). All specifications include
hospital, day-month-year and age group fixed effects, and flexible controls for temperatures (maximum
and minimum), precipitation, and ground-level wind speed. The test for weak instruments uses the F
statistics and p-values from Sanderson and Windmeijer (2016). Standard errors, clustered by hospital,
are reported in brackets. Significance levels are indicated by ∗ < .1, ** < .05, *** < .01.
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Table 9: IV estimates of the effect of PM 2.5 on respiratory ER rates at municipality level.
Weighted regression.

OLS IV/2SLS

(1) (2) (3) (4)

PM 2.5, same day (µg / m3) 0.641** 0.488* 4.457*** 4.485***
[0.317] [0.277] [1.143] [1.084]

Municipality FE Yes No Yes No

Municipality-Year FE No Yes No Yes

F stat PM 2.5 (weak inst.) 26.3 29.5
p-value PM 2.5 (weak inst.) 0.000 0.000
Mean DV 2,650 2,650 2,650 2,650
Observations 345,820 345,820 345,820 345,820

Note: This table reports IV estimates of equation (1) at the municipality level. The dependent variable
is the respiratory ER visit rate per million of residents in the relevant age group. The instruments
for PM2.5 are wind speed at three different pressure levels: 725 hPa (layer 12), 550 hPa (layer 16),
and 450 hPa (layer 18). All specifications include hospital, day-month-year and age group fixed effects,
and flexible controls for temperatures (maximum and minimum), precipitation, and ground-level wind
speed. Estimates are weighted by the number of residents in the relevant age group. The test for weak
instruments uses the F statistics and p-values from Sanderson and Windmeijer (2016). Standard errors,
clustered by hospital, are reported in brackets. Significance levels are indicated by ∗ < .1, ** < .05, ***
< .01.
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Table 10: IV estimates of the effect of PM 2.5 on respiratory ER rates at municipality level,
by age group. Weighted regression.

(1) (2) (3) (4) (5)
< 1 1-4 5-14 15-64 65 +

PM 2.5, same day (µg / m3) 31.612** 22.455*** 8.285*** 1.947*** 4.974***
[12.854] [6.755] [2.902] [0.639] [1.059]

Mean DV 6,312 4,118 1,512 606 700
Observations 68,761 68,761 68,761 68,761 68,761

Note: This table reports IV estimates of equation (1) by age group at the municipality level. The
dependent variable is the respiratory ER visit rate per million of residents in the relevant age
group. The instruments for PM2.5 are wind speed at three different pressure levels: 725 hPa
(layer 12), 550 hPa (layer 16), and 450 hPa (layer 18). All specifications include municipality
and day-month-year fixed effects, and flexible controls for temperatures (maximum and minimum),
precipitation, and ground-level wind speed. Estimates are weighted by the number of residents
in the relevant age group. The test for weak instruments uses the F statistics and p-values from
Sanderson and Windmeijer (2016). Standard errors, clustered by municipality, are reported in
brackets. Significance levels are indicated by ∗ < .1, ** < .05, *** < .01.

Table 11: IV estimates of the effect of PM 2.5 on (log) ER visits by ER type

(1) (2) (3)
Respiratory Circulatory Traffic accidents

PM 2.5 (µg / m3) 0.0036*** -0.0000 0.0001
[0.0003] [0.0001] [0.0001]

F stat PM 2.5 (weak inst.) 272.9 272.9 272.9
p-value PM 2.5 (weak inst.) 0.000 0.000 0.000
Mean DV 8.165 0.551 0.144
Observations 2,618,765 2,618,765 2,618,765

Note: This table reports IV estimates of equation (1) for different types of ER visits. The dependent
variable is the logarithm of ER visits for the corresponding ER type. The instruments for PM2.5 are
wind speed at three different pressure levels: 725 hPa (layer 12), 550 hPa (layer 16), and 450 hPa (layer
18). All specifications include hospital-month and day-month-year fixed effects, and flexible controls for
temperatures (maximum and minimum), precipitation, and ground-level wind speed. The test for weak
instruments uses the F statistics and p-values from Sanderson and Windmeijer (2016). Standard errors,
clustered by hospital, are reported in brackets. Significance levels are indicated by ∗ < .1, ** < .05, ***
< .01.
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Table 12: OLS and IV estimates of the effect of PM 2.5 on (log) respiratory ER visits using
two lags of PM 2.5.

OLS IV/2SLS

(1) (2) (3) (4)

PM 2.5, same day (µg / m3) 0.0001 0.0001* 0.0044*** 0.0045***
[0.0001] [0.0001] [0.0007] [0.0007]

PM 2.5, 1-day lag (µg / m3) 0.0001** 0.0001 -0.0019* -0.0014
[0.0001] [0.0001] [0.0010] [0.0010]

PM 2.5, 2-day lag (µg / m3) 0.0001 0.0001 -0.0006 -0.0006
[0.0001] [0.0001] [0.0008] [0.0008]

Hospital FE Yes No Yes No

Hospital-Year FE No Yes No Yes

F stat PM 2.5 (weak inst.) 116.9 114.3
p-value PM 2.5 (weak inst.) 0.000 0.000
Mean DV 8.165 8.165 8.165 8.165
Observations 2,168,715 2,168,715 2,168,715 2,168,715

Note: This table reports OLS and IV estimates of equation (1) that include two lags of PM2.5. The
dependent variable is the logarithm of respiratory ER visits. The instruments for PM2.5 are wind
speed at three different pressure levels: 725 hPa (layer 12), 550 hPa (layer 16), and 450 hPa (layer
18). Lagged PM2.5 are isntrumented using lagged instruments. All specifications include hospital,
day-month-year and age group fixed effects, and flexible controls for temperatures (maximum and
minimum), precipitation, and ground-level wind speed. The test for weak instruments uses the
F statistics and p-values from Sanderson and Windmeijer (2016). Standard errors, clustered by
hospital, are reported in brackets. Significance levels are indicated by ∗ < .1, ** < .05, *** < .01.

32



Table 13: OLS and IV estimates of the effect of PM 2.5 on (log) respiratory ER visits using
3-day average PM 2.5.

OLS IV/2SLS

(1) (2) (3) (4)

PM 2.5 3-day avg. (µg / m3) 0.0003** 0.0003*** 0.0020*** 0.0024***
[0.0001] [0.0001] [0.0005] [0.0004]

Hospital FE Yes No Yes No

Hospital-Year FE No Yes No Yes

F stat PM 2.5 (weak inst.) 228.7 183.8
p-value PM 2.5 (weak inst.) 0.000 0.000
Mean DV 8.165 8.165 8.165 8.165
Observations 2,568,250 2,568,250 2,568,250 2,568,250

Note: This table reports OLS and IV estimates of equation (1) using 3-day average
PM2.5. The dependent variable is the logarithm of respiratory ER visits. The instru-
ments for 3-day average PM2.5 are 3-day average wind speed at three different pressure
levels: 725 hPa (layer 12), 550 hPa (layer 16), and 450 hPa (layer 18). All specifica-
tions include hospital, day-month-year and age group fixed effects, and flexible controls
for temperatures (maximum and minimum), precipitation, and ground-level wind speed.
The test for weak instruments uses the F statistics and p-values from Sanderson and
Windmeijer (2016). Standard errors, clustered by hospital, are reported in brackets. Sig-
nificance levels are indicated by ∗ < .1, ** < .05, *** < .01.
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Table A.1: IV estimates of the effect of PM 2.5 on (log) respiratory ER visits at municipality
level.

OLS IV/2SLS

(1) (2) (3) (4)

PM 2.5, same day (µg / m3) 0.0003** 0.0001 0.0039*** 0.0039***
[0.0001] [0.0001] [0.0009] [0.0009]

Municipality FE Yes No Yes No

Municipality-Year FE No Yes No Yes

F stat PM 2.5 (weak inst.) 33.8 29.2
p-value PM 2.5 (weak inst.) 0.000 0.000
Mean DV 32.078 32.078 32.078 32.078
Observations 345,820 345,820 345,820 345,820

Note: This table reports IV estimates of equation (1) at the municipality level. The dependent variable
is the logarithm of respiratory ER visits. The instruments for PM2.5 are wind speed at three different
pressure levels: 725 hPa (layer 12), 550 hPa (layer 16), and 450 hPa (layer 18). All specifications
include municipality and day-month-year fixed effects, and flexible controls for temperatures (maximum
and minimum), precipitation, and ground-level wind speed. The test for weak instruments uses the F
statistics and p-values from Sanderson andWindmeijer (2016). Standard errors, clustered by municipality,
are reported in brackets. Significance levels are indicated by ∗ < .1, ** < .05, *** < .01.
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Table A.2: IV estimates of the effect of PM 2.5 on (log) respiratory ER visits at municipality
level. Weighted regression.

OLS IV/2SLS

(1) (2) (3) (4)

PM 2.5, same day (µg / m3) 0.0003 -0.0001 0.0025*** 0.0025***
[0.0003] [0.0001] [0.0008] [0.0008]

Municipality FE Yes No Yes No

Municipality-Year FE No Yes No Yes

F stat PM 2.5 (weak inst.) 26.3 29.5
p-value PM 2.5 (weak inst.) 0.000 0.000
Mean DV 32.078 32.078 32.078 32.078
Observations 345,820 345,820 345,820 345,820

Note: This table reports IV estimates of equation (1) at the municipality level. The dependent variable
is the logarithm of respiratory ER visits. The instruments for PM2.5 are wind speed at three different
pressure levels: 725 hPa (layer 12), 550 hPa (layer 16), and 450 hPa (layer 18). All specifications
include municipality and day-month-year fixed effects, and flexible controls for temperatures (maximum
and minimum), precipitation, and ground-level wind speed. Estimates are weighted by the number of
residents in the relevant age group. The test for weak instruments uses the F statistics and p-values from
Sanderson and Windmeijer (2016). Standard errors, clustered by municipality, are reported in brackets.
Significance levels are indicated by ∗ < .1, ** < .05, *** < .01.
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Table A.3: IV estimates of the effect of PM 2.5 on respiratory ER rates at municipality level.

OLS IV/2SLS

(1) (2) (3) (4)

PM 2.5, same day (µg / m3) 1.855** 1.444** 15.376*** 16.222***
[0.706] [0.599] [4.546] [4.542]

Municipality FE Yes No Yes No

Municipality-Year FE No Yes No Yes

F stat PM 2.5 (weak inst.) 33.8 29.2
p-value PM 2.5 (weak inst.) 0.000 0.000
Mean DV 2,650 2,650 2,650 2,650
Observations 345,820 345,820 345,820 345,820

Note: This table reports IV estimates of equation (1) at the municipality level. The dependent variable
is the respiratory ER visit rate per million of residents in the relevant age group. The instruments for
PM2.5 are wind speed at three different pressure levels: 725 hPa (layer 12), 550 hPa (layer 16), and
450 hPa (layer 18). All specifications include municipality and day-month-year fixed effects, and flexible
controls for temperatures (maximum and minimum), precipitation, and ground-level wind speed. The
test for weak instruments uses the F statistics and p-values from Sanderson and Windmeijer (2016).
Standard errors, clustered by hospital, are reported in brackets. Significance levels are indicated by ∗
< .1, ** < .05, *** < .01.
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Table A.4: OLS and IV estimates of the effect of PM 2.5 on (log) respiratory ER visits.
Balanced panel of hospitals.

OLS IV/2SLS

(1) (2) (3) (4)

PM 2.5 (µg / m3) 0.0002** 0.0002** 0.0032*** 0.0037***
[0.0001] [0.0001] [0.0005] [0.0004]

Hospital FE Yes No Yes No

Hospital-Year FE No Yes No Yes

F stat PM 2.5 (weak inst.) 197.2 199.1
p-value PM 2.5 (weak inst.) 0.000 0.000
Mean DV 8.391 8.391 8.391 8.391
Observations 2,281,110 2,281,110 2,281,110 2,281,110

Note: This table reports OLS and IV estimates of equation (1) using a balanced panel
of hospitals, i.e. hospitals with measures of PM 2.5 in each year of the sample. The
dependent variable is the logarithm of respiratory ER visits. The instruments for PM2.5
are wind speed at three different pressure levels: 725 hPa (layer 12), 550 hPa (layer 16),
and 450 hPa (layer 18). All specifications include hospital and day-month-year fixed
effects, and flexible controls for temperatures (maximum and minimum), precipitation,
and ground-level wind speed. The test for weak instruments uses the F statistics and
p-values from Sanderson and Windmeijer (2016). Standard errors, clustered by hospital,
are reported in brackets. Significance levels are indicated by ∗ < .1, ** < .05, *** < .01.
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Table A.5: OLS and IV estimates of the effect of PM 2.5 on (log) respiratory ER visits.
Weighted regression at the hospital level.

OLS IV/2SLS

(1) (2) (3) (4)

PM 2.5 (µg / m3) 0.0003*** 0.0003*** 0.0033*** 0.0034***
[0.0001] [0.0001] [0.0004] [0.0003]

Hospital FE Yes No Yes No

Hospital-Year FE No Yes No Yes

F stat PM 2.5 (weak inst.) 269.6 255.4
p-value PM 2.5 (weak inst.) 0.000 0.000
Mean DV 8.165 8.165 8.165 8.165
Observations 2,618,750 2,618,750 2,618,750 2,618,750

Note: This table reports OLS and IV estimates of equation (1) where estimates are
weighted by the average number of annual ER visits in the relevant age group. The
dependent variable is the logarithm of respiratory ER visits. The instruments for PM2.5
are wind speed at three different pressure levels: 725 hPa (layer 12), 550 hPa (layer 16),
and 450 hPa (layer 18). All specifications include hospital and day-month-year fixed
effects, and flexible controls for temperatures (maximum and minimum), precipitation,
and ground-level wind speed. The test for weak instruments uses the F statistics and
p-values from Sanderson and Windmeijer (2016). Standard errors, clustered by hospital,
are reported in brackets. Significance levels are indicated by ∗ < .1, ** < .05, *** < .01.
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